Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Contemporary Pediatrics ; (12): 675-680, 2022.
Article in Chinese | WPRIM | ID: wpr-939647

ABSTRACT

OBJECTIVES@#To study the metabolic mechanism of neonatal sepsis at different stages by analyzing the metabolic pathways involving the serum metabolites with significant differences in neonates with sepsis at different time points after admission.@*METHODS@#A total of 20 neonates with sepsis who were hospitalized in the Department of Neonatology, Hunan Provincial People's Hospital, from January 1, 2019 to January 1, 2020 were enrolled as the sepsis group. Venous blood samples were collected on days 1, 4, and 7 after admission. Ten healthy neonates who underwent physical examination during the same period were enrolled as the control group. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for the metabonomic analysis of serum samples to investigate the change in metabolomics in neonates with sepsis at different time points.@*RESULTS@#On day 1 after admission, the differentially expressed serum metabolites between the sepsis and control groups were mainly involved in the biosynthesis of terpenoid skeleton. For the sepsis group, the differentially expressed serum metabolites between days 1 and 4 after admission were mainly involved in pyruvate metabolism, and those between days 4 and 7 after admission were mainly involved in the metabolism of cysteine and methionine. The differentially expressed serum metabolites between days 1 and 7 after admission were mainly involved in ascorbic acid metabolism.@*CONCLUSIONS@#The metabolic mechanism of serum metabolites varies at different stages in neonates with sepsis and is mainly associated with terpenoid skeleton biosynthesis, pyruvate metabolism, cysteine/methionine metabolism, and ascorbic acid metabolism.


Subject(s)
Humans , Infant, Newborn , Ascorbic Acid , Cysteine , Metabolomics , Methionine , Neonatal Sepsis , Pyruvates , Sepsis
2.
Chinese Journal of Contemporary Pediatrics ; (12): 711-715, 2020.
Article in Chinese | WPRIM | ID: wpr-828679

ABSTRACT

OBJECTIVE@#To study the value of fractional anisotropy (FA) of regions of interest (ROI) on magnetic resonance diffusion tensor imaging (DTI) in bilirubin-induced neurological dysfunction in neonates.@*METHODS@#A total of 91 neonates with hyperbilirubinemia who were hospitalized from January 2017 to January 2018 were enrolled. According to the peak level of total serum bilirubin, they were divided into three groups: mild/moderate increase (n=45), severe increase (n=35), and extremely severe increase (n=11). According to the presence or absence of abnormal neurological manifestations, they were divided into two groups: neurological dysfunction (n=20) and non-neurological dysfunction (n=71). Ten healthy full-term infants were enrolled as the control group. Head DTI was performed for all neonates to measure the FA values of the bilateral globus pallidus, the anterior limb of the internal capsule, the posterior limb of the internal capsule, and the cerebellar dentate nucleus.@*RESULTS@#The extremely severe increase group had significantly lower FA values of the globus pallidus than the control, mild/moderate increase, and severe increase groups (P<0.05). The severe increase group had significantly lower FA values of the globus pallidus than the control group (P<0.05). The extremely severe increase group had significantly lower FA values of the posterior limb of the internal capsule than the control, mild/moderate increase, and severe increase groups (P<0.05). The neurological dysfunction group had significantly lower FA values of the globus pallidus and the posterior limb of the internal capsule than the non-neurological dysfunction group (P<0.05).@*CONCLUSIONS@#Serum bilirubin level combined with the changes in the DTI FA values of the globus pallidus and the posterior limb of the internal capsule can be used to predict the injury of cerebral nuclei and white matter fibers.


Subject(s)
Humans , Infant, Newborn , Anisotropy , Bilirubin , Brain , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , White Matter
SELECTION OF CITATIONS
SEARCH DETAIL